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In this paper several variations of a simple theory of dynamic compaction of porous solids 
are. pr~sented and discussed. This theory elaborates the conventional theory of shock propa
gahon m. such a way that the sh~ck structures observed to propagate in these materials can 
?e descnbed. Steady-wave profiles are calculated for several compaction models and the 
mference of constitutive equations from experimental data is discussed. It is sho~ that the 
theo~ can be made to reproduce steady-wave profiles observed in the usual plate-impact 
expenments exactly. 

I. INTRODUCTION 

Porous solids occur in such forms as geologic mate
rials, manufactured foams, powder-metal compacts, 
and ceramics. During the past decade a substantial 
effort has been directed toward achieving an under
standing of the propagation of moderate-amplitude 
plane waves of uniaxial strain in these materials. 1-8 

While both compressive-loading and release waves 
have been studied, the loading behavior has received 
the most attention because it is more easily investi
~ated experimentally. From an analytical standpoint, 
It seems clear that the compression problem is the 
more difficult because unloading from partially com
pacted states involves only a small volume recovery 
along a relatively straight stress- strain path. 6 , B 

For most analyses of compaction-wave propagation 
in these materials it has been assumed that the state 
of stress in the material, as it is being compacted, 
depends only on the state of strain. Hydrodynamic, 
elastoplastic, and elastic-locking models have been 
used extensively. In each of these models steady 
compaction waves are found to propagate in the form 
of one or more shocks. There has been some work 
directed toward more complicated models involving 
characteristic lengths9, 10 or timesll , 12 but these 
theories are less developed. Historically, experi
ments have been conducted at the very high pres
sures induced by explosive detonation (see , for ex
ample , Refs. 13-15) and have been interpreted in 
terms of the Rankine-Hugoniot theory of shock pro
pagation. The profiles of these high-amplitude waves 
are satisfactorily approximated as shocks because 
the actual wave thickness is small compared to pro
pagation distances of interest. More recently, plate
impact experiments have been performed at pres
sures only moderately in excess of the static com
paction threshold. The waveforms observed in these 
experiments are only crudely described as shocks 
because of the large amount of dispersion present. 
As an illustration of the sort of effects observed, we 
present the experimental records of Fig. 1(a) show
ing the profiles to which shocks of various ampli
tudes have evolved after propagating for a distance 
of 1.25 mm in porous iron samples. A plot of wave 
thickness as a function of stress amplitude is given 
in Fig. 1(b). 

It is to describe these low-pressure observations 

5503 

that an improved theory must be developed. While it 
is easy to conceive of a number of effects that would 
contribute to the observed disperSion, it seems 
probable that the most influential is the lag experi
enced by the material in coming to equilibrium under 
load because of the time required for pore collapse. 
This dispersive effect is counteracted by the ten
dency of propagating waves to evolve toward shocks 
due to the rapidly decreasing compressibility of the 
material as it is compacted. The suggestion is ob
vious that here, as in the case of gas dynamics, 16 

observed wave thicknesses are a result of the 
balance struck between these two conflicting ten
dencies. The fact that the stronger waves rise much 
more quickly than the weaker ones indicates that the 
shock-formation tendency is beginning to predomi
nate over the dispersive mechanisms at the higher 
stresses. Unique (for a given amplitude) stable wave 
profiles where the tendencies are in perfect balance 
so that the wave can propagate unchanged in form 
exist and have been observed experimentally in a 
number of porous materials. 

The objective of this paper is the exploration of a 
range of possible variations of a Simple compaction 
theory, and the effect of these variations on steady 
waveforms. Primary attention has been given the 
problem of inference of constitutive equations from 
experimental data. Extension of the theory to cover 
a broader range of effects such as unloading or 
thermal response or treatment of the evolution of 
a disturbance into a steady wave is possible, but it 
is not discussed here. In Sec. II a brief review of 
some relevant aspects of wave propagation is given 
to introduce the notation and provide ready reference 
for a few formulas. The constitutive equations of a 
simple compaction theory are discussed in Sec. m. 
Section IV is devoted to the solution of specific 
problems, Sec. V to the experimental determination 
of material constitution, and Sec. VI to a summary 
of the important findings. 

n. THEORY 

A. Kinematic and Dynamic Preliminaries 

In this section we consider only problems involving 
uniaxial compaction. The motion of a material point 
initially residing at a place X in an inertial coordi
nate space but which, at some later time t, has been 
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FIG. 1. Experimental results on 
shock compaction of porous iron. 
(a) shows profiles of stress waves 
of various amplitudes and (h) shows 
how the shock thickness varies with 
stress. These data have been com
municated privately by Lysne and 
Halpin (Ref. 2). 
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displaced to a place x in this space may be ex
pressed by an equation of the form x=X+ U(X, t). 
Strain (taken positive in compression), strain rate, 
and particle velocity are defined in terms of U (X, l) 
by the relations 

E=-UX(X,t), e=-Uxt(Xl), u=Ut(x,l). (1) 

In order that mass be conserved locally, the specific 
volume v(X, t) of the material point originally resid
ing at X must be related to the (constant) initial spe
cific volume of the body by the equation v=vo(I-E). 
The equation of motion that must be satisfied is 

(2) 

where a (X, t) is the normal stress (taken positive in 
compression) on planes X = con st. This equation of 
motion must be augmented by constitutive equations 
relating the dynamic variable a to the kinematic 
variable U in order that specific problems may be 
solved. Before addressing this aspect of the problem 
it is convenient to make a few general remarks on 
steady-wave solutions of Eq. (2). 

B. Steady Waves 

In this section we consider the behavior of waves 
that propagate at constant velocity and unchanged in 
form, i. e., steady waves . 16-19 Any traveling-wave 
solutionf(y ± et) of the linear-wave equation e2 8 
= 8tt has this property; this equation involves n~ither 
dispersive tendency nor tendency toward shock for
mation, so perfect balance is achieved in any wave 
and it propagates unchanged in form. As mentioned 
in Sec. I, it is possible that these two effects could 
both be present and still allow certain waves to pro
pagate steadily because of their counterbalancing 
tendencies. In Sec . IV we will see that such waves 
do exist within the scope of the theory presented 
here. They have been observed experimentallv and 
have been proven to be the stable solution to ~hich 
other waveforms evolve. 

To study a wave propagating at the constant velocity 
V we introduce the coordinates 

~ =X - Vt and T= t (3) 
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FIG. 2. Typical equilibrium stress-strain curve. Also 
shown is the Rayleigh line <R for a wave taking the mate
rial from the state (0-0. EO) to the state (0-1. (01). The dashed 
lines represent the behavior of an ideal locking material. 

In these coordinates Eq. (1) takes the form 

and Eq. (2) becomes ' 

a, + Po(UTT - 2VUT , + V'lUu ) =0 (5) 

In a steady wave propagating at the velocity V the 
field variables depend on ~ alone, so all T deriva
tives vanish. Equation (4) then takes the form 
E=-dU/d~, E=VcJ2U/de, andu=-VdU/d~, leading 
to the important relations 

E = - V:~ and u= VE, (6) 

and Eq. (5) becomes d(a-poV'lE)/d~=O. This latter 
equation is readily integrated to give a - Po V'lE 
= const. If the material is in a state 0'0; Eo at some 
point of the wave (actually we will assume this to be 
the case as ~ - 00), the constant can be evaluated and 
we have 

(7) 

Since the second equation of (6) holds everywhere in 
the wave, it implies that u o= Veo and hence that 

(8) 

where Uo is the particle velOCity of the material in 
the state (0'0' Eo). Equations (7) and (8) together give 

po(u-uo)V-(a-ao)=O, (9a) 

(E-Eo)V-(u-uo)=O . (9b) 

These formulas are of the same form as the Ran
kine-Hugoniot shock equations. In particular, if u, E, 

and a in Eqs. (9) are assigned the values of these 
quantities behind the wave, then the two pairs of 
equations are identical when uo, Eo, and 0'0 refer to 
values of the unsubscripted variables ahead of the 
wave. This shows that any steady-wave experiment 
can be interpreted as a shock experiment if only 
equilibrium states behind the. wave are of interest. 
As we shall see, the steady-wave analysis gives the 
complete wave profile. From Eq. (7) we see that 
the (a, E) path followed by a particle during the pas
sage of a steady wave is the straight line, called 

the Rayleigh line <R, connecting the initial and final 
states in the (a,E) plane, and the wave speed is 
determined from the slope of this line: 

(10) 

In order that any existing steady-wave solutions be 
of practical interest, thev must be stable and should 
also be unique. The heuristic discussion in Sec. I 
suggests that steady waves will be stable, and dem
onstrations of this stability in certain cases, as well 
as approximate solutions to wave evolution problems, 
have been given by Lighthilll6 and Bland. l9 One of 
the simpler theories to be discussed in this paper 
results in the equation f(U x)U xx + vU XIX= Utt which 
has been studied rather extensively in a recent 
series of papers20

-
22 in which the existence, unique

ness, and stability of steady-wave solutions are 
discussed. . 

The properties of steady waves discussed above, 
in addition to their simplicity, suggest their use in 
the experimental determination of constitutive equa
tions. Unfortunately, as is apparent from the fact 
that each member of a broad class of disturbances 
evolves to the same steady wave, all information 
bearing on the evolutionary process is lost and one 
cannot expect steady-wave measurements alone to 
determine a constitutive equation uniquely. For this 
reason we must select a general class of constitutive 
equations as a starting point, and then demonstrate 
its applicability to the problem at hand. This is done 
in Secs. ill-V. 

Ill. CONSTITUTIVE EQUATIONS 

As a starting point for the selection of a constitutive 
equation we note that experiments conducted on a 
variety of porous materials show that, for any given 
material, the states achieved as a result of dynamic 
compaction lie on a single, unique stress-strain 
curve u= aE(e) that is independent of the rate at which 
the compaction occurred. This observation suggests 
our first basic constitutive assumption: When the 
strain rate becomes zero at the end of a compaction 
process, the existing stress is a function of the 
strain, 0'= a E(E). We call this functional relationship 
an equilibrium stress-strain curve. These curves 
have been measured for a variety of materials, and 
several mathematical representations for them have 
been advanced. The most recent and complete theory 
of these curves known to us is that of Herrmann. 4 

The experiments that generate the equilibrium 
curves also show that, while a theory in which the 
stress is assumed to be a function solely of strain 
can predict the result of a compaction process 
correctly, it fails to provide an adequate description 
of the process itself: The fact that waves induced by 
planar impact do not propagate as centered simple 
waves, velocity discontinuities, or combmations 
thereof is the most typical indication of this failure, 
In order to obtain a theory capable of describing the 
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FIG. 3. Steady waveforms of various amplitudes in a ma
terial collapsing according to Eq. (20). We have taken 
,82 = 10. 

compaction process we generalize the rate-indepen
dent theory associated with the constitutive equation 
CJ= CJE(e) by the inclusion of an additional contribution 
to the stress that is dependent on the rate of strain
ing. This generalization is based on the discussion 
in the report of Johnsonll and the paper of Butcher, 12 

but focuses on the exploration of collapse phenomena 
while ignoring some of the range of effects covered 
in these articles. 

Both Johnson and Butcher found it convenient to 
separate their thinking about material response into 
two parts dealing with the configuration of the mate
rial when loaded but in equilibrium (i. e., when the 
strain rate is zero) and the strain rate during col
lapse under applied load, respectively. While this 
has led to an unusual representation for a constitu
tive equation that is actually quite conventional, we 
have found the breakdown to be of great practical 
value and have continued to use it. The configuration 
of a body in equilibrium is, of course, obtained from 
the equilibrium stress-strain curve. The strain rate 
during a compaction process must be obtained from 
the complete rate-dependent constitutive equation. 
Since this equation is framed in a form inverted for 
strain rate, it is described as a "collapse rule". 
In the following we will show that the theory ob
tained in this way can be expressed in the conven
tional23 form CJ=CJE(e)+ljI(e,E), where ljI(e,O)=O. 

The specific problem motivating this study lies in 
the calculations of Butcher which, while including 
a number of effects not included in this work and 
employing a very precise representation of the 
equilibrium stress-strain curve, fail to provide an 
adequate description of the observed steady-wave 
profiles in the material studied. The shortcomings 
seem traceable to. the use of an oversimplified 

collapse rule [Eq. (1.19) of Ref. 12]. In this paper 
we generalize the linear collapse rule employed by 
Butcher in a way that seems plausible, fits conve
niently into the conventional framework for contin
uum mechaniCS, and enables it to accommodate 
all steady-wave observations exactly . 

A. Equilibrium Stress-Strain Curves 

As noted previously, the determination of equilib
rium stress-strain curves has been the object of 
many investigations over the past decade. The pre
sent work is built on this foundation and the equilib
rium stress-strain curves called for in this paper 
are just those that have been determined before. 
Since these curves have fairly elaborate mathemat
ical representations [often compounded by their 
expression in the form e=!(CJ)], or exist only in 
graphical or tabular form, calculations using them 
are done by numerical means. 

In all cases we have assumed that the equilibrium 
response of the material is described by a stress
strain curve that is concave toward the stress axis. 
For materials exhibiting a yield behavior, this 
requirement will be met only if the analysis is 
restricted to the range of states above some stress 
CJo> O. Compaction waves propagating in a material 
having a yield point are unstable and separate into a 
low-amplitude precursor followed by the slower
propagating main compaction wave. When we take 
the stress CJo to be the precursor amplitude, then the 
present analysis is applicable to the description of 
the main compaction wave. 

In order to accomplish the parameter studies of 
Sec. IV, it is convenient to have at hand a mathe
matical representation of the equilibrium stress
strain curve that, in addition to providing a reason
able approximation to real-material behavior at low 
strains, (a) is simple enough to allow analytical 
calculation of steady-wave forms for a variety of 
collapse rules, (b) involves a single dimensionless 
parameter that measures the departure from linear
ity, and (c) does not contribute to asymmetry of 
calculated steady waveforms. The function 

(11) 

fulfills these requirements; it apprOximates the 
observed behavior at low strains where dispersion 
effects are important and involves the parameter (3 

characterizing the nonlinearity. It also eliminates 
the equilibrium behavior as a contributor to asym
metry of waveforms, but a discussion of what this 
means and a demonstration that it is accomplished 
must be postpone until Sec. IV. The extreme 
example of nonlinear equilibrium response is pro
vided by the locking model represented by the 
dashed lines on Fig. 2 and discussed at the end of 
Sec. IV. The specific forms of the stress-strain 
curve given by Eq. (11) or by the locking model are 
not, of course, central features of the theory; they 
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FIG. 4. steady waveforms of amplitude El- EO= O. 2 in a 
material collapsing according to Eq. (20) . The effect of in
creasing curvature in the equilibrium stress-strain curve 
is illustrated. 

are used merely to facilitate the parametric studies 
of Sec. IV. 

B. Collapse Rules 

In this section we address the question of how a 
porous solid collapses to an equilibrium state upon 
load application. 

Let us consider a material point in a nonequilibrium 
state A and having the equilibrium stress-strain 
curve shown as the heavy solid line on Fig. 2. This 
figure has been drawn showing the state point A on 
the Rayleigh line, as it is in a steady wave, but we 
emphasize that the theory is intended to be appli
cable to any collapse process, and that A can refer 
to any state above the equilibrium curve. We will 
assume that the rate of collapse e of the material 
depends on its departure from equilibrium, and take 
as our measure of this departure the distance from 
A to the equilibrium state B at the same strain. 
With this assumption we have the collapse rule 

(12) 

One generalization of this collapse rule that seems 
appropriate is the introduction of strain-dependent 
weighting in the calculation of the collapse rate 
associated with a given departure from equilibrium. 
In this case it would take the form 

(13) 

The necessity for this generalization is suggested 
by observations to be discussed subsequently. 

The simplest special case of Eq. (12) that may be 
of interest is that in which the function cf>l is linear 
and homogeneous: 

(14) 

the case considered by Butcher. Clearly this func
tion must involve a characteristic time and a char
acteristic stress in order that the dimensions of 
each member of Eq. (12) be the same. For the same 

reason, Eq. (13) must also involve one or more 
pairs of such constants. 

The quasistatic collapse, under constant applied 
stress, of a material governed by Eq. (14) is 
readily found to be given implicitly by 

t/T=J.~ {O"*[O"A -O"E(X)]-l}dA (15) 

and hence to be dependent on the form of the function 
O"E(E) as well as the constant TO"*. 

Before discussing wave-propagation problems in
volving Eq. (13), let us consider what conditions 
must be satisfied by the function cf> in order that the 
material respond in a plausible fashion. It is clear 
that the collapse rate must vanish when the material 
is in equilibrium, so we must have cf> (e, 0): 0. Simi
larly, it seems plausible that the collapse rate 
should increase for increasing departure from 
equilibrium at any given strain, so we require that 
cf> be a monotonic increasing function of its second 
argument. Finally, our intent in including the ex
plicit dependence of e on e was to accomodate the 
possibility that, for a given departure from equili
brium, the collapse rate would be greater at large 
strains than at small strains because the reduced 
void size in the first instance would be expected to 
lead to a smaller effective characteristic collapse 
time. To achieve this objective we require that cf> 

also be a monotonic increasing function of its first 
argument when the second is held fixed. Surfaces cf> 
meeting the above conditions slope upward as one 
proceeds in the direction of either increaSing strain 
or overstress. In the special case of Eq. (12) the 
surface becomes a cylindrical sheet with generators 
parallel to the E axiS, and when the collapse rule is 
linear this cylinder becomes a plane. In these latter 
cases, of course, the collapse rule is completely 
represented by a single-valued curve in the (e, 0"- O"E) 
plane. 

To see that Eq. (13) fits naturally into the usual 
theory23 of rate-dependent constitutive equations as 
stated above, we note that it can be rewritten in the 
form 0"= O"E(E)+l/J( E,€), where I/J(E,O):O, and 
I/J (E, E) e ~ ° by invoking the monotonicity conditions 
just discussed. In this form we see that it exhibits 
the usual decomposition of stress into equilibrium 
and nonequilibrium parts. The special case of Eq. 
(12) has the simple inverted form 0"= O"E(E) + cf>il (E), 
which, in the linear case considered by Butcher, is 
further simplified to 0"= O"E(e) + 0"*Tf. • 

IV. STEADY-WAVE PROFILES 

In this section we consider steady-wave propagation 
in materials governed by the collapse rule of Eq. (13) 
and any equilibrium curve 0"= O"E(E) that is concave to 
the stress axis in the region of interest. The solu
tion for general forms of the collapse rule and equil
ibrium curve is reduced to quadrature, and explicit 
closed-form results are given for special cases. 
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FIG. 5. Dependence of steady-wave rise time on amplitude 
according to Eq. (21). 

Since the state far behind a propagating disturbance 
is one of equilibrium, 0"1 = O"E(E1), we see from Eq. 
(10) that the speed of propagation of a steady wave 
is determined by the equilibrium stress-strain curve 
alone and is quite independent of tpe collapse rule. 
In general we have V = {(1/ Po)[ O"E(E1) - O"o](El - Eo)-1}1/2 • 

To solve for a steady waveform we simply substitute 
the first of Eqs. (6) and (7) into the collapse rule 
and integrate. In the general case we find that 

. i.E dx 
~ = - V (0 .0 >/2 ip (X, 0"0 + Po VZ(x - Eo) - O"E(X» , 

1 0 (16) 

where the constant of integration has been chosen so 
that ~ = 0 at the half-amplitude point. Since cp (E, 0) 
= 0 we see that the integrand is singular at both Eo 
and El so that the waveforms considered extend over 
the whole range - 00 < ~ < 00. As a practical matter, 
however, we will see that the bulk of the variation 
is confined to a rather narrow region of space, or 
short interval of time. Since ~ =X - Vt, we can 
easily obtain the strain history at a fixed particle 
(in our examples we take X = 0; the waveform is in
dependent of the choice). Stress and particle-veloc
ity histories are obtained from the strain history by 
means of Eqs. (7) and (8) given in Sec. II. 

In the special case where the stress- strain curve of 
Eq. (11) is used, Eq. (16) takes the Simplified form 

~ Vf.E dX (17) 
= - (01.

0
0>/2 cp (X, POC~2 (E1 - X)(X - Eo» 

where we now have 

(18) 

A. Linear Collapse Rule 

As a specific example, let us determine the steady
wave profile implied by Eq. (17) when the linear 
collapse function (14) is used. Evaluation of the in
tegral is routine and yields the result 

__ VT 10 (~) ~ - (32 (E1 - Eo) g. El - E ' 
(19) 

where V is given by Eq. (18) and where we have 
taken 0"* = Poc~. The strain history obtained from 
Eq. (19) is 

E(t) _ + (E1 - Eo) exp [(32 (E1 - Eo)t/T) 
- Eo 1 + exp [(32 (E1 - Eo)t/T] 

(20) 

Graphs of these waveforms as functions of ampli
tude are shown on Fig. 3 for the case {32 = 10 and on 
Fig. 4 for the fixed amplitude El - Eo=O. 2 and vary
ing values of {32. The stress and particle-velocity 
histories can be obtained from Eq. (20) through the 
simple algebraic relations (7) and (8). Examination 
of Eq. (20) (and the figures) shows that the upper and 
lower halves of the waveforms are symmetrical. 
This symmetry is a property of waveforms governed 
by any collapse rule of the form of Eq. (12) if we 
use the quadratic stress-strain curve, but is not 
generally true otherwise, as is especially evident 
in the example of the locking solid to be discussed 
subsequently. 

Since steady compressive disturbances propagate as 
shocks in the absence of dispersive tendenCies, a 
simple measure of the influence of this latter effect 
is the steady-wave rise time. Various definitions of 
rise time are possible, but for simplicity, ease of 
experimental determination, and uniform applica
bility to various waveforms, we define the rise time 
!Y as that time interval required for the strain at a 
fixed particle to increase from Eo + O. 05 (E1 - Eo) to 
Eo + O. 95 (El - Eo). This is the same as the correspond
ing value for stress or particle velOCity and is given 
by 

(21) 

for the example at hand. We see that the rise time is 
proportional to the ratio of the characteristic time 
of the material to the nonlinear correction to the 
wave speed, and is thus determined by the relative 
importance of the tendencies toward dispersion and 

0.2 - 0.2 

-0. 1 

-1.5 -1.0 1.0 1.5 

FIG. 6. Steady waveforms of various amplitudes in a ma
terial collapsing according to Eq. (24). We have taken {32 
= 10 and (]!2= 100. 
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FIG. 7. Steady waveforms of amplitude 10 1 - EO = O. 2 in a 
material collapsing according to Eq. (24). The effect of in
creased strain-weighting of the collapse rate is illustrated. 
We have taken {32= 10. 

shock formation. Values of 5"IT given by Eq. (21) 
are plotted as functions of wave amplitude for var
ious values of (32 on Fig. 5. 

B. Strain-Weighted Collapse Rule 

In a recent paper, Butcherl2 examined two steady
wave profiles propagated in a rigid polyurethane 
foam. His results showed that the rise time was a 
stronger function of wave amplitude than is implied 
by the linear collapse model, and he expressed this 
discrepancy in terms of the characteristic time, 
saying that it seemed to be shorter for the higher 
amplitude wave than for the one of lower amplitude. 
This tends to confirm our expectation that the char
acteristic time for collapse should be a decreaSing 
function of strain. To explore the consequences of 
such an assumption, let us consider the collapse 
function 

cf>= [a- aE(e)] [a*T(e)]-l 

with T (e) given by the simple relation 

T( E)= To [1 + a 2 (E - EO)]-1 

so that the collapse rate increases linearly with 
strain at any given overstress a- aE • 

(22) 

(23) 

The integral of Eq. (17) is readily evaluated for 
this collapse rule, and we obtain the impliCit strain 
history 

t 1 [10 (2!..)-....:L.lo (21 +el0'2(e/el)) 
To = {32el g. El 1 +elO' 2 g. 2+0'2el 

1 log. (2 (1- E/El)) ] 1 + El0'2 (24) 

where we have taken Eo=O, ao=O, and a*=poc~. As 
before, the steady wave speed is given by Eq. (18). 
The rise time fT, as defined in the previous example, 
is found to be 

(25) 

In Fig. 6 we have plotted strain histories of various 
amplitudes for £i2 = 100 and (32 = 10. To show the in
fluence of variations of 0'2 we have plotted strain 
histories in Fig. 7 for several choices of this pa
rameter when El and (32 are assigned the fixed values 
0.2 and 10, respectively. Graphs of rise time as a 
function of wave amplitude are shown in Fig. 5 for 
0'2 = 0 and are qualitatively the same but indicative 
of stronger quantitative dependence on amplitude as 
0'2 is increased. We note from Figs. 6 and 7 that 
the strengthened dependence of rise time on ampli
tude results primarily from a steepening of the up
per portion of the wave profile. 

c. Quadratic Collapse Rule 

As an alternative to the introduction of strain
weighted collapse rules for increasing the depen
dence of rise time on amplitude we consider rules 
involving nonlinear dependence of the collapse rate 
on the overstress a - a E. Specifically, we consider 
the case where 

cf>l =---;'-T [a- aE(e)] (1 + T/~2 [a- a E(E)]) • 
Poco 1 Poco 

(26) 

It is clear that, for a given overstress, € will in
crease with decreasing T2 (assuming T2> 0). When 
we use the function aE(e) given by Eq. (11), calcula
tion of the steady waveform is readily accomplished 
in the same way as before, and we arrive at the 
history 

T 1 {32 (e~ - Eo) log. (:1--~ ) 
+....!....lo (r-[E-~(el+Eo)]) 

21- ge r+[e-t(El+Eo)] , 
where 

------

, - '0 

"" _/ 

0. 2 

l 
I 

/ 

-0. 6 -0.4 -0. 2 O. 0 O. 2 

tiT 

EQ. (24) 

EQ. (271 

0. 4 0. 6 

(27) 

FIG. 8. Waveforms of the same amplitude and rise time 
calculated according to Eqs. (24) and (27). We have taken 
{32=10, To = Tj=T, a 2= 100, T 2/ T1=0.00887, and have 
T / T = O. 4459. 
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FIG. 9. Steady waveforms of various amplitudes in a 
locking material governed by the linear collapse rule. 

Calculation of the rise time gives 

9" = 5.889 +_1_1 r-0.45 (E1 -Eo) 
Tl (32(€1- Eo) {32r ' oge r+0.45 (€1 -Eo) 

I 

In the limit as T 2 - 0() the waves governed by these 
equations become the same as those ariSing directly 
from the linear collapse rule. For finite values of 
T 2 the waveforms arising from the quadratic col
lapse theory show stronger dependence of rise time 
on amplitude while maintaining their symmetry. 

As an indication of the sort of tailoring of waveforms 
that can be achieved by variations of the collapse 
rule, we have shown in Fig. 8 a waveform arising 
from the strain-weighted theory and one from the 
quadratic collapse theory. The equilibrium response 
curve and the basic time constants were chosen to 
be the same in each case and the parameters £12 and 
T JT 1 were selected so that the rise time would be 
the same as well. 

D. Locking Model 

To get an indication of the influence of the equili
brium curve aE (€) on steady-wave profiles, we 
consider wave propagation in a material governed by 
the strain-weighted collapse model of Eq. (22) and 
the lOCking equilibrium curve shown in Fig. 2. The 
locking model is of interest because it represents, 
in an exaggerated form, an aspect of the compaction 
behavior of many porous materials that is not well 
represented by the quadratic stress-strain curve. 

The steady wave speed in a locking material is 
given by 

P0 lf2=(a1- a o)(Es -Eo)-1 

strain waves in a locking material all have the same 
amplitude, so we focus our attention on stress 
waves. Since aE(€)=ao(for €<€s), calculation of 
stress waveforms is particularly easy, and we ob
tain 

The rise time, defined as before, is given by 

a*(E _E)jO.95(E S -OO>T(X) 
9"= s 0 --dX . 

0'1-0'0 0.05(Os-00> X 

In the particular case where T (E - Eo) = To [1 + £12 
X(E- Eo)]-I, evaluation of the above integrals gives 

t= Toao(Es- Eo) 
0'1- 0'0 

and 

(0'1 - 0'0)9"= To [0'0 (Es - Eo) log~( 19~:~: ~~~: ~:: = :~~ ) J 
(30) 

In Fig. 9 we have shown some typical waveforms 
given by the special case of Eq. (29) in which £12 = 0, 
i. e., when collapse rule is linear, with the locking 
equilibrium curve. We see that these waveforms are 
very unsymmetrical, as one would expect from the 
fact that 0'- aE is largest at the peak amplitude of 
each wave. These waves also terminate abruptly at 
their peak amplitude because of the finite collapse 
rate there. Otherwise, their behavior is similar to 
that of the waves discussed previously. When we 
take £1*-O the upper part of the waveform rises more 
steeply than in the case shown in Fig. 9. 

V. EXPERIMENTAL DETERMINATION OF MATERIAL 
CONSTITUTION 

In this section we discuss the inference of equili
brium stress-strain curves and collapse rules from 
experimental records of steady waveforms. For 
this purpose, we assume that one can experimentally 
establish the existence, form, and propagation ve
locity of such waves. 

As a result of our discussion of this section it will . 
become clear that, in each material, all steady 
waves associated w,th a given initial state (am Eo) can 
be exactly reproduced by the present theory and that, 
for this reason, checks of the theory against exper
imentally determined steady waveforms give no in
formation about its validity in the context of more 
general collapse processes. 

A. Equilibrium Stress-Strain Curve 

The equilibrium stress-strain curve is determined 
by applying Eq. (9) to the state behind each member 
of a family of steady waves of various amplitudes 
and measured velocities. If, for example, we have 
a particle-velocity history u(t), u1 is obtained as 
the limiting value of u (t) as t becomes large. Equa
tions (9) then give El =€o + [(u1 - uo)/V] and 0'1 = 0'0 
+ Po (u1 - uo)V. This gives a point (0'1> E1), and the 
locus of all such points, one obtained from each 
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FIG. 10. Typical compaction surface E=q,(€,U-uE ) . The 
path on the surface shown as a heavy solid line is the locus 
of (E, u- UE' €) states taken at a material point during the 
passage of a wave. The dashed line is the projection of the 
path into the (E, u- UE) plane, and the small dotted loop is 
its projection into the (u - U E' €) plane. 

recorded waveform, is the equilibrium stress-strain 
curve. 

B. CoUapse Rule 

Inference of the function ¢ of Eq. (13) from a se
quence of steady waveforms of various amplitudes 
and speeds is, in principle, a straightforward 
matter. Let us suppose that the data consist of 
several particle-velocity records, along with 
a measurement of V for each wave. The equilibrium 
curve is found as described above and can now be 
considered known. Using Eqs. (9), the known values 
of Po and V, and the known initial conditions, the 
stress and strain histories can be determined. Let 
us consider a given time t*. From the stress 
history we read off a(t*), and from the strain his
tory E (t*) and E (t*) can be determined. Since the 
function a E(E) is known, we have values of E, a, and 
a - a E at t = t* and are thus able to plot a point of the 
surface ¢ as shown on Fig. 10. This process is 
repeated for a number of values t* for each of the 
records in hand to map out a portion of the surface. 
From each experimental record we obtain values 
of ¢ associated with (E, a- aE ) pOints lying on a 
curve in this plane (such as that shown by the dashed 
line in Fig. 10) that passes through the values Eo and 
El on the E axis, and is single valued in E. As an ex
ample we note that, in the case of a material gov
erned by the linear collapse rule and the quadratic 
equilibrium behavior, these curves are parabolas 
with their maximum value, (a- aE)max=Po~,B2[t(El 
- Eo)]2, taken at E=t(E1 + Eo). 

Families of steady waveforms obtained by means of 
the usual plate-impact experiments have the same 
initial states (ao, Eo), but different amplitudes. Since 
the Rayleigh lines corresponding to these waves do 
not cross, no two waves will have an (E, a- aE ) point 
in common, so no conflicting values of ¢ can arise. 
By the same token, we see that the process de
scribed will always lead to a function ¢ that repro
duces all of the observed waveforms exactly. 

The possibilities for fitting less general collapse 
rules such as that of Eq. (12) or the specific forms 
in the examples of Sec. IV to experimental data are, 
of course, more limited. If the surface ¢ (E, a - a E) 
determined by the means discussed above turns out 
to be a cylindrical sheet (in which case the genera
tors will be parallel to the E axis since this line is on 
the surface), then, of course, Eq. (12) is appropriate 
and the material is characterized by a curve in the 
(a- aE , e) plane. 

As a practical matter, it may be desirable to re
strict one's effort to fitting a simple collapse rule 
to available data. A collapse rule of the form of 
Eq. (12) is completely determined (over the range 
in question) by the highest-amplitude waveform in 
hand; it is just the locus of pOints (a - a E' E) ob
tained from this record. For most materials 
(idealized locking materials being the exception) 
a - a E ' and hence e, vanish at both initial and final 
strains in the wave profile, and for this reason the 
locus of the (a - a E' E) pOints will form a closed path 
in this plane that begins and ends at the origin. An 
example of such a path is shown as the small dotted 
loop on Fig. 10. If the collapse rule of Eq. (12) is 
appropriate, the path will be a single line that is 
retraced for the upper portion of the wave profile. 
If, however, the path is a wide loop, a strong strain 
dependence is indicated and Eq. (12) does not pro
vide an adequate model of the behavior. A less 
abstract check on the adequacy of the form is ob
tained by simply calculating lower-amplitude wave 
profiles and comparing them with experimental 
records. Collapse rules of such simple forms as 
those of Eqs. (14) and (26) can be established by 
choosing the coefficients T or T 1 and T 2' respec
tively, for best fit to the (a-aR , i:) curve. 

When the equilibrium response of the material is 
adequately represented by the locking model, steady
wave solutions are particularly simple and somewhat 
stronger statements can be made. For example, we 
see from Eq. (28) that a necessary condition for the 
applicability of the collapse rule of Eq. (22) is that 
the product (a1 - ao)5"be the same for each member 
of a family of wave profiles. Let us suppose that 
this is true in some instance, and that we would like 
to fit the waveforms of Eq. (29) to the data. Since 
we have determined the constant value of the quantity 
(a1 - ao) , Eq. (30) becomes a relationship giving 
a one-parameter family of coefficient pairs (To (0'2), 

0'2) for which all the waveforms given by Eq. (30) 
have the rise times observed in the experiments. 

The remaining parameter 0'2 can be adjusted to 
improve the agreement between the calculated and 
observed waveforms. As 0'2 is increased the upper 
portion of the waveform is steepened with the lower 
portion being spread more to keep the rise time the 
same. When an approximate fit of a Simple collapse 
rule to experimental observations is desired, the 
first thing to be decided upon is an appropriate 
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criterion of goodness 'of fit. Usually one would like a 
reasonable fit to a range of waveforms rather than a 
perfect fit to some and a large error for others. For 
this purpose, one of the more reasonable criteria 
of good fit would be agreement between theory and 
experiment on the amplitude dependence of rise time. 

VI. SUMMARY 

In the previous sections of this paper, we have pre
sented and discussed a simple theory of the dynamic 
compaction of porous solids. This theory elaborates 
the conventional theory of shock propagation in such 
a way that the observed shock structures can be 
described. It is not the ' only reasonable theory for 
this purpose, but does seem representative of sev
eral that could be proposed. We have shown that, for 
each Ipaterial, the theory can be fit exactly to all 
steady-wave profiles having a given initial state. 
The same is true of several other theories in which 
the collapse rule involves two independent variables. 
Theories involving collapse rules that are special 
cases of Eq. (13) can, in general, be fit only ap
prOximately to experimental observations. A brief 
discussion of how this fitting could be accomplished 
has been presented. Examination of a variety of 
solutions such as were given in Sec. IV is helpful 
in deciding on the form of a collapse rule appropri
ate to ·fitting a specific set of data. 

The conclusion that the collapse rule of Eq. (13) 
could be fit exactly to all steady-wave data following 
from the usual plate-impact experiment leaves open 
the question of how one can obtain a meaningful 
check of theory against experiment. From an ex
amination of the discussion of Sec. V we see that 
what is needed is an experiment involving a com
paction path that intersects the pencil of Rayleigh 
lines of the impact experiments. The two sorts of 
experiments that come to mind are those involving 
precompressed samples (so that the initial conditions 

. are changed) and those in which evolving waves are 
studied. The former are reasonable and simple to 
perform. The latter also seem promising, but are 
more difficult since the theoretical predictions to be 
compared with the experiments must follow from 
solutions of the partial differential Eq. (5), along 
with appropriate constitutive equations. 
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